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Riemann Mapping Theorem: If Ω is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : Ω → D.

The Schwarz-Christoffel formula:

f(z) = A + C

∫ z n∏
k=1

(1 − w

zk
)αk−1dw.

Gives conformal map to polygon. α’s are interior
angles, z’s map to vertices.
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Many numerical methods:

• “Zipper”: Don Marshall

• Circle packing: Ken Stephenson

• S-C solvers: Trefethen, Banjai, Driscoll, Vavasis

• holomorphic forms and Ricci flow: Yau and Gu

• Random waks: Braverman et. al.

• Methods of Wegmann, Theodorsen, Fornberg

• See surveys by Delillo (1994) and Porter (2007).
Porter divides methods into two classes:

easy methods Ω → D

fast methods D → Ω

Can we approximate a conformal map to an n-gon
with accuracy ǫ in time C(n, ǫ)?
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A map is K-quasiconformal if preimages of small
disks are ellipses of eccentricity ≤ K.

fz =
1

2
(fx − ify), fz̄ =

1

2
(fx + ify)

|µf | = |fz̄

fz
| ≤ K − 1

K + 1
< 1

Fact: If ‖µ‖∞ < 1 ∃ QC f so µ = µf .

• f is conformal iff µf ≡ 0

• If µg = µf then f ◦ g−1 is conformal.

• QCK = K-QC maps. If w, z ⊂ T are n-tuples,

dQC(w, z) = inf{log K : ∃h ∈ QCK, h(w) = z}
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Theorem: If ∂Ω is an n-gon we can compute a
(1+ǫ)-QC map D → Ω in time O(n log 1

ǫ log log 1
ǫ).

Maps are stored as O(n) p-term power series where
p = O(log 1

ǫ). Only O(1) FFT’s per vertex.

Theorem: Suppose ∂Ω is an n-gon. We can
construct points w = {w1, . . . , wn} ⊂ T so that:

1. uses at most C(ǫ)n steps.

2. dQC(w, z) < ǫ.

where z = f−1(v) are conformal prevertices and
C(ǫ) = C + C log 1

ǫ log log 1
ǫ
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Hyperbolic disk: Metric on D,

dρ = |dz|/1 − |z|2 ≃ |dz|
dist(z, ∂Ω)

Geodesics are circles or lines orthogonal to ∂D.

Hyperbolic space: Metric on R
3
+,

dρ = |dz|/dist(z, R2).

Geodesics are circles or lines orthogonal to R
2.
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• f is a bi-Lipschitz if

1

A
ρ(x, y) ≤ ρ(f(x), f(y)) ≤ Aρ(x, y).

• f is a quasi-isometry if

1

A
ρ(x, y) − B ≤ ρ(f(x), f(y)) ≤ Aρ(x, y) + B.

• QI=BL at “large scales”.

• On hyperbolic disk, BL ⇒ QC ⇒ QI.

Theorem: f : T → T has a QC-extension to
interior iff it has QI-extension (hyperbolic metric)
iff it has a BL-extension.
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Fast Almost Riemann Mapping Theorem:
Can construct a K-QC map from n-gon Ω to disk
in O(n) time, and K independent of n and Ω.
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Schwarz-Christoffel maps:

If we plug in ι-images of vertices we almost get the
correct polygon (center). Using uniformly spaced
points is clearly worse (right).
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Map for more complicated domains
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Approximate by disks such that #(∂D∩∂Ω) ≥ 2.
Centers are the medial axis.

For polygons is a finite tree with 3 types of edges:
• point-point bisectors (straight)
• edge-edge bisectors (straight)
• point-edge bisector (parabolic arc)

Chin-Snoeyink-Wang (1998) gave O(n) algorithm.
Uses Chazelle’ theorem (1991): an n-gon can be
triangulated in O(n) time.
Medial axis is subset of
boundary of Voronoi cells
where sites are edges of poly-
gon.

For applications see:
www.ics.uci.edu/~eppstein/gina/medial.html

11



Similar flow for any simply connected domain.
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The obvious “collapse tangential crescents map”
is not a quasi-isometry (it even maps some interior
points to boundary!)

Two ways to write union of disks using crescents.

We call these tangential and normal crescents.
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Collapsing normal crescents is fast to compute and
gives quasi-isometry. (Angle scaling family)
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The dome of Ω is boundary of union of all hemi-
spheres with bases contained in Ω.

Equals boundary of hyperbolic convex hull of Ωc.
Only need consider medial axis disks.

Google(”medial axis”)= 26,300
Google(”hyperbolic convex hull”)= 71
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Finitely bent domain (= finite union of disks).
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Nearest point retraction R : Ω → Dome(Ω):
Expand ball tangent at z ∈ Ω until it hits dome.

z u v

R(z)
R(u)=R(v)

normal crescents = R−1(bending lines)

gaps = R−1(faces)

Theorem: R is a quasi-isometry.

Corollary (Sullivan, Epstein-Marden):
∃ K-QC σ : Ω → Dome, σ = Id on ∂Ω.

Thurston conjectured K = 2. False by Epstein
and Markovic. K < 7.82 is known.
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Let ρ be the hyperbolic path metric on Dome.

Theorem (Thurston): There is an isometry ι
from (Dome, ρ) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and ∞).

ι ◦ R : Ω → Dome → D is uniformly QI map!
Equals crescent collapsing map on boundary.
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Theorem: If ∂Ω is an n-gon we can compute a
(1+ǫ)-QC map D → Ω in time O(n log 1

ǫ log log 1
ǫ).

Proof of theorem is in two steps:

Step 1: Given ǫ < ǫ0 and (1+ǫ)-QC fn : Ω → D

construct (1 + ǫ2)-QC map fn+1 : Ω → D. Takes
time O(1 + log 1

ǫ log log 1
ǫ).

Step 2: Discretize angle scaling family

(Ω0, V0), . . . , (ΩN , VN )

• Ω0 = D,
• ΩN = Ω, VN = V ,
• δ-QC maps gk : Ωk → Ωk+1, Vk → Vk+1.

If δ < ǫ0/2 then can find conformal maps by
Step 1 and induction.
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Amazing Fact 1: ǫ0 independent of Ω and n.

Amazing Fact 2: N independent of Ω and n.

Consequence: Get ǫ0 approximation in time
O(n) (independent of Ω).

Then just repeat Step 1 until get ǫ accuracy :

ǫ0, Cǫ20, . . . , C
kǫ2

k

0 .

About log log ǫ iterations suffice and time for kth
iteration is O(k22k), so final step dominates.
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Idea for Step 1: Suppose

f : H → Ω, g : H → H, µf = µg.

Then f ◦ g−1 : H → Ω is conformal.

g

f

Can’t solve µg = µf (i.e., gz̄ = µgz) exactly in
finite time, but can quickly solve

gz̄ = (µf + O(‖µf‖2))gz.

Then f ◦ g−1 is (1 + O(‖µf‖2))-QC.
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Cut H into O(n) pieces on which f , fα or log f
has nice series representation. Need p = O(| log ǫ|)
terms on each piece to get ǫ accuracy.

1

2

3

4

5

6

Note that 4,5,6 correspond to arches. Need arches
for linear complexity bound.
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Thick/Thin decompositions of polygons.
Needed to get only O(n) pieces in decomposition.

A hyperbolic manifold can be partitioned into thick
and thin parts based on the size of the injectivity
radius at each point.

Thin parts often cause technical difficulties, but
there are only a few types of thin parts and each
has a well understood shape.
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There is analogous decomposition of polygons.

An ǫ-thin part corresponds to two edges whose
extremal distance in Ω is < ǫ. (Roughly, distance
apart is small compared to minumum diameter.)

Parabolic thin parts occur at every vertex. Hy-
perbolic thins parts use non-adjacent edges.

There is a version of Mumford-Bers compactness.
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• At most O(n) thin parts.

• Can be located in linear time using iota map.

•Conformal maps onto thin parts “explicitly known”.

• Remaining thick components have good approx-
imations by O(n) disks.
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Application to meshing:
Marshall Bern and David Eppstein showed any n-
gon has quadrilateral mesh with all angles ≤ 120◦

which can be found in time O(n log n).

Theorem: Any n-gon has quadrilateral mesh
with all new angles between 60◦ and 120◦ which
can be found in time O(n).

Idea of proof

• Decompose polygon into thick and thin parts.

• Find explicit meshes in thin parts (known shapes).

• Conformally map thick parts to disk and use hy-
perbolic geometry to mesh. Map back to domain.
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• Is the estimate O(n log 1
ǫ log log 1

ǫ) optimal?

What is bit complexity? Joe Mitchell pointed out
to me that linear time in infinite-precision need
not be linear time in finite precision.

• Find optimal QC maps with constraints?

Quasiconformal Jacobian problem: given J > 0,
is there a QC map f so that

area(f(E)) ≃
∫

E
Jdxdy,

Given J how can we compute f?

Similar problem will be discussed by Saalfeld.
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Conformal = Möbius in 3-D and not every topo-
logical ball can be QC mapped to a round ball.

Can we quickly test if a polyhedron can be QC
mapped to a ball and estimate the best QC con-
stant? Solve Dirichlet problem in linear time?

Given a polyhedron can we find a “simplier” one
which is a QC image? E.g., convert 10, 000-gon
to a 100-gon with almost the same “shape”.

David Hamilton has shown a 3-D topological ball
is a QC image of a round ball iff its boundary is a
“nice” image of a 2-sphere. This could reduce 3-D
problems to 2-D surface mapping problems (e.g.,
Stephenson, Gu).
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CRDT algorithm of Driscoll and Vavasis (1998).

What other way to approximate by disks gives a
better map? Can a few “rules of thumb” give a
very fast map which is adequate for applications?
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Davis’s algorithm: Suppose P is a polygon
with vertices v = {v1, . . . , vn} ∈ C

n and

w = {w1, . . . , wn} ∈ T
n

is the guess for the prevertices. Apply Schwarz-
Christoffel to w to get v′ = {v′1, . . . , v′n}. and
modify guess by

|w′
k − w′

k+1| = k|wk − wk+1|
|vk − vk+1|
|v′k − v′k+1|

Method can fail (even locally):

e e’

What if we use medial axis edges to modify guess?
Experiment with modification rules.
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Fact 1: If z ∈ Ω, ∞ 6∈ Ω,

r ≃ dist(z, ∂Ω) ≃ dist(R(z), R2) ≃ |z − R(z)|.

r

z

R(z)

37



Fact 2: R is Lipschitz.

Ω simply connected ⇒

dρ ≃ |dz|
dist(z, ∂Ω)

.

z ∈ D ⊂ Ω and R(z) ∈ Dome(D) ⇒
dist(z, ∂Ω)/

√
2 ≤ dist(z, ∂D) ≤ dist(z, ∂Ω)

⇒ ρΩ(z) ≃ ρD(z) = ρDome(R(z)).
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Fact 3: ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ C.

Suppose dist(R(z), R2) = r and γ is geodesic
from z to w.

⇒ dist(γ, R2) ≃ r

⇒ dist(R−1(γ), ∂Ω) ≃ r,

R−1(γ) ⊂ D(z, Cr)

⇒ ρΩ(z, w) ≤ C

39



Moreover, g = ι ◦ σ : Ω → D is locally Lipschitz.
Standard estimates show

|g′(z)| ≃ dist(g(z), ∂D)

dist(z, ∂Ω)
.

Use Fact 1

dist(z, ∂Ω) ≃ dist(σ(z), R2)

≃ exp(−ρ
R3

+
(σ(z), z0))

& exp(−ρS(σ(z), z0))

= exp(−ρD(g(z), 0))

≃ dist(g(z), ∂D)

•

•

•

•
•
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